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FHE-friendly block cipher Chaghri

Description of Chaghri (initial version)

Background of Chaghri

▶ Chaghri: FHE-friendly block cipher, designed by Ashur,
Mahzoun, and Toprakhisar (to appear at ACM CCS 2022).

▶ SPN network.

▶ Defined over large field F263 .

▶ About 65% faster than AES.

▶ Block consists of 3 words of size 63 bits; 8 rounds. Each
round has two steps.

▶ Designed to have low multiplicative depth.
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Description of Chaghri

State of Chaghri: a = (a1, a2, a3) ∈ F3
263 .

Round function R(a) of its decryption is described in next
Algorithm.

Consider decryption because designers choose the secure number
of rounds by mainly analyzing the security of decryption, and their
aim was to optimize decryption.
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Description of Chaghri

Round function of Chaghri at the (j +1)st round where 0 ≤ j ≤ 7:

ai = G (ai ) for i ∈ {1, 2, 3}
ai = B(ai ) for i ∈ {1, 2, 3}
a = M · (a1, a2, a3)T
ai = ai + RK [2j + 1]i for i ∈ {1, 2, 3}
ai = G (ai ) for i ∈ {1, 2, 3}
ai = B(ai ) for i ∈ {1, 2, 3}
a = M · (a1, a2, a3)T
ai = ai + RK [2j + 2]i for i ∈ {1, 2, 3}

Round key RK [j ] = (RK [j ]1,RK [j ]2,RK [j ]3) ∈ F3
263 is generated

from a master key K = (K1,K2,K3) ∈ F3
263 . Whitening key is

RK [0] = (RK [0]1,RK [0]2,RK [0]3).
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Description of Chaghri

Components G , B and M used in round function:

Nonlinear function G (x) : F263 → F263. G (x) is defined as
G (x) = x2

32+1.

Affine transform B(x) : F263 → F263. B(x) is defined as
B(x) = c1x

23 + c2 where c1, c2 ∈ F263 are constants.

Linear transform M : F3
263 → F3

263. M is a 3× 3 MDS matrix. M
not specified by designers. Our attacks apply to any choice of M.

Definition of one step. According to the round function
described in the Algorithm, the round function is
R(a) = AK ◦M ◦B ◦S ◦AK ◦M ◦B ◦S(a). One step of Chaghri is
defined as AK ◦M ◦B ◦ S(a). Call it the step function of Chaghri.
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Description of Chaghri

Notation for the internal state. Denote the internal state after i
steps by (zi ,1, zi ,2, zi ,3).

For example, the input state is (z0,1, z0,2, z0,3), the internal state
after 1 step is (z1,1, z1,2, z1,3), and the internal state after 1 round
is (z2,1, z2,2, z2,3).

Consider R steps of Chaghri. Total number of steps is 16.
However, our attack can even apply if R > 16. Do not restrict the
maximal value of R.
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On finite fields

For a prime number p and a positive integer n, the finite field Fpn

consists of a set of pn numbers.

Let α be a primitive element of Fpn . Then each element x in the
finite field Fpn can be written as

x =
n−1∑
i=0

βiα
i ,

where βi ∈ [0, p − 1]. Moreover, the set {1, α, . . . , αn−1} is said to
be a polynomial basis of Fpn . For the element x ∈ Fpn ,{

xp
n
= x ∀x ∈ Fpn ,

xp
n−1 = 1 ∀x ∈ Fpn and x ̸= 0.
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On finite fields

For two monomials X a and X b in the polynomial ring F2n [X ], one
has X a · X b = XMn(a+b), where Mn(x) (x ≥ 0) is defined as:

Mn(x) =

{
2n − 1 if 2n − 1|x , x ≥ 2n − 1,

x%(2n − 1) otherwise.

By the definition of Mn(x), we have
Mn(x1 + x2) = Mn(Mn(x1) +Mn(x2)), Mn(2

i ) = 2i%n and
Mn(2

ix) = Mn(2
i%nMn(x)) for i ≥ 0.

Furthermore

(x + y)p
i
= xp

i
+ yp

i

for ∀x , y ∈ Fpn and i ≥ 0.
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Higher-Order Differentials in F2n

For a given function F : F2n → F2n , there always exists a vectorial
Boolean function G : Fn

2 → Fn
2 such that

σ :
n−1∑
i=0

βiα
i 7→ (β0, β1, . . . , βn−1) ∈ Fn

2,

σ(F(x)) = G(σ(x)) ∀x ∈ F2n ,

where {1, α, . . . , αn−1} is a polynomial basis of F2n .

Let deg(G) be the algebraic degree of G. For the higher-order
differential attack, given any affine vector subspace V of dimension
deg(G) + 1 from Fn

2, one has
∑

v∈V G(v) = 0. This implies

∑
(β0,β1,...,βn−1)∈V

F(
n−1∑
i=0

βiα
i ) = 0.
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Higher-Order Differentials in F2n

deg(G) is related to the univariate representation of F : The
univariate representation of F is

F =
2n−1∑
i=0

uiX
i ,

where ui ∈ F2n for i ∈ [0, 2n − 1]. The univariate degree of F
denoted by Du

F is defined as:

Du
F = max{i : i ∈ [0, 2n − 1], ui ̸= 0}.

Then, deg(G) can be computed as follows:

deg(G) = max{H(i) : i ∈ [0, 2n − 1], ui ̸= 0}.

max{H(i) : i ∈ [0, 2n − 1], ui ̸= 0} is also called the algebraic
degree of F denoted by Da

F .
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Higher-Order Differentials in F2n

Examples. Consider two univariate polynomials F1,F2 ∈ F263 [X ],
where

F1 = X 230+231 + X 21+23+24 , F2 = X 260+231+22+23 + X 261+231 .

Then, we have

Du
F1

= 230 + 231,Da
F1

= 3, Du
F2

= 261 + 231,Da
F2

= 4.

Higher-order differential attacks can also be extended to the
multivariate case.
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How to Attack Chaghri

Previous methods for estimating degrees of iterated constructions
over finite fields don’t seem to suggest an attack on Chaghri.

Propose Coefficient Grouping for the degree evaluation of Chaghri.

Core idea: Describe a set of exponents with just a single vector of
integers. Thus propagation of the exponents is reduced to studying
the propagation of the vectors.

Efficiency of this method is due to these facts: Propagation of the
vectors is deterministic and can be described in iterative manner.
Time complexity to compute the vectors increases linearly in the
number of attacked rounds.

After computing the vectors, bounding the algebraic degree is then
reduced to a natural optimization problem, solvable with suitable
solvers.
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Attack Settings

Focus on its application to the univariate polynomial. But the
method can be extended to the multivariate case.

A more general form of S(x) and B(x):

S(x) = x2
k0+2k1 ,B(x) = c1x

2k2 + c2.

Consider the finite field F2n , i.e. the internal state a = (a1, a2, a3)
of Chaghri satisfies ai ∈ F2n for i ∈ [1, 3] (with constraints on
(k0, k1, n) so that S(x) is a permutation).

For Chaghri, (k0, k1, k2) = (32, 0, 3) and n = 63.
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How to Attack Chaghri

Attack Settings

Consider an input state which can be represented as univariate
polynomials in the variable X ∈ F2n , as shown:

z0,1 = A0,1X + B0,1, z0,2 = A0,2X + B0,2, z0,3 = A0,3X + B0,3, (1)

where A0,i ,B0,i ∈ F2n (1 ≤ i ≤ 3) are randomly chosen constants.

In this way, after an arbitrary number of steps, each state word can
be represented as a univariate polynomial in X .

Aim: Compute the upper bound Dr ,i for the algebraic degree of
the univariate polynomial Pr ,i (X ) where zr ,i = Pr ,i (X ) (1 ≤ i ≤ 3).
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Attack Settings

Upper bound for the algebraic degree of r-step Chaghri is
Dr = max{Dr ,1,Dr ,2,Dr ,3}.

Hence, if Dr < n, there exists a higher-order differential attack on
r steps of Chaghri with time and data complexity 2Dr+1.

Specifically, can consider an input state of the following form:

z0,1 = X1, z0,2 = A2, z0,3 = A3,

where A2,A3 ∈ F2n are randomly chosen constants and X is the
variable.
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Tracing Polynomials

With the input form shown in (1), the state words (zr ,1, zr ,2, zr ,3)
can be written as univariate polynomials of the form:

zr ,1 =

|wr |∑
i=1

Ar ,iX
wr,i , zr ,2 =

|wr |∑
i=1

Br ,iX
wr,i , zr ,3 =

|wr |∑
i=1

Cr ,iX
wr,i

Here Ar ,i ,Br ,i ,Cr ,i ∈ F2n are constants depending on the key.
The set

wr = {wr ,1,wr ,2, . . . ,wr ,|wr |}

means the set of exponents for the univariate polynomials after r
steps. Mention that for r = 0, we have

w0 = {0, 1}, (2)

which corresponds to the input form specified in (1).
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Tracing Polynomials

Evolution of polynomial representations

We know that

Dr ≤ max{H(wr ,i ) : 1 ≤ i ≤ |wr |}. (3)

How do the univariate polynomials representing
(zr+1,1, zr+1,2, zr+1,3) evolve through the step function?
For G (zr ,1), we have

G (zr ,1) = (

|wr |∑
i=1

Ar ,iX
wr,i )2

k0+2k1

= (

|wr |∑
i=1

Ar ,iX
wr,i )2

k0 (

|wr |∑
j=1

Ar ,jX
wr,j )2

k1

=

|wr |∑
i=1

|wr |∑
j=1

Ar ,i ,jX
Mn(2k0wr,i+2k1wr,j ).
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Tracing Polynomials

Evolution of polynomial representations

Here Ar ,i ,j ∈ F2n are still constants depending on the key.

For B ◦ G (zr ,1), we get

B ◦ G (zr ,1) = c1(

|wr |∑
i=1

|wr |∑
j=1

Ar ,i ,jX
Mn(2k0wr,i+2k1wr,j ))2

k2 + c2

=

|wr |∑
i=1

|wr |∑
j=1

A′
r ,i ,jX

Mn(2k0+k2wr,i+2k1+k2wr,j ).
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Tracing Polynomials

Evolution of polynomial representations

Similar expressions for the other two components, with other
constants.
Therefore obtain

zr+1,1 =

|wr |∑
i=1

|wr |∑
j=1

Ar+1,i ,jX
Mn(2k0+k2wr,i+2k1+k2wr,j ).

and similar for the two other components.
Hence, we obtain an iterative relation between the sets wr and
wr+1:

wr+1 = {e|e = Mn(2
k0+k2wr ,i + 2k1+k2wr ,j), 1 ≤ i , j ≤ |wr |}.
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Tracing Polynomials

Evolution of polynomial representations

Thus for each element e ∈ wr+2, there must exist (i , j , s, t) where
1 ≤ i , j , s, t ≤ |wr | such that

e = Mn(2
k0+k2(2k0+k2wr ,i + 2k1+k2wr ,j) +

2k1+k2(2k0+k2wr ,s + 2k1+k2wr ,t)).

In other words,

wr+2 = {e|e = Mn(2
2k0+2k2wr ,i +

2k0+k1+2k2(wr ,j + wr ,s) + 22k1+2k2wr ,t),

1 ≤ i , j , s, t ≤ |wr |}.
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Tracing Polynomials

Evolution of polynomial representations

For the concrete parameters of Chaghri:

wr+1 = {e|e = M63(2
35wr ,i + 23wr ,j), 1 ≤ i , j ≤ |wr |},

wr+2 = {e|e = M63(2
7wr ,i + 238(wr ,j + wr ,s) + 26wr ,t),

1 ≤ i , j , s, t ≤ |wr |}.
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Tracing Polynomials

Evolution of polynomial representations

There exists another general representation of the set wr+ℓ.

Each set wr can be fully described with a vector of integers
(N r

n−1,N
r
n−1, . . . ,N

r
0).

For w0, this vector is

N0
0 = 1,N0

i = 0 (1 ≤ i ≤ n − 1).

For the Ni ’s a recursive relation can be derived:

N r+1
i = N r

(i−k1−k2)%n + N r
(i−k0−k2)%n for 0 ≤ i ≤ n − 1, r ≥ 0. (4)
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Tracing Polynomials

Evolution of polynomial representations

For any wr , the corresponding vector of integers
(N r

n−1,N
r
n−1, . . . ,N

r
0) can be computed in linear time, i.e. with rn

times of simple integer additions.

Then, the set wr can be described as follows:

wr = {e|e = Mn(

Nr
n−1∑
i=1

2n−1w0,di,n−1
+

Nr
n−2∑
i=1

2n−2w0,di,n−2
+(5)

. . .+

Nr
0∑

i=1

20w0,di,0),

where 1 ≤ di ,j ≤ |w0| for 0 ≤ j ≤ n − 1}. (6)
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Tracing Polynomials

Application to the Chaghri Parameters

Concrete parameters of Chaghri:

For w1 the corresponding (N1
62,N

1
61, . . . ,N

1
0 ) is

N1
3 = 1,N1

35 = 1,N1
i = 0 (i /∈ {3, 35}, 0 ≤ i ≤ 62).

While for w2, the corresponding (N2
62,N

2
61, . . . ,N

2
0 ) is

N2
6 = 1,N2

7 = 1,N2
38 = 2,N2

i = 0 (i /∈ {6, 7, 38}, 0 ≤ i ≤ 62).

For any wr , we can compute the corresponding (N r
62,N

r
61, . . . ,N

r
0)

in linear time.
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Tracing Polynomials

A Natural Optimization Problem

How to compute Dr after giving the vector of integers
(N r

n−1,N
r
n−2, . . . ,N

r
0)?

Can interpret representation of wr equivalently: There are in total
N r
n−1 + N r

n−2 + . . .+ N r
0 possible variables that can independently

take values from w0 = {0, 1}.

Hence, the problem to bound Dr becomes a natural optimization
problem:

maximize H(Mn(
n−1∑
i=0

2iγi )),

subject to 0 ≤ γi ≤ N r
i for i ∈ [0, n − 1].

Can be solved by a suitable MILP problem, and with additional
work in linear time (skipped here).
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Tracing Polynomials

A Natural Optimization Problem

For each coefficient 2i , there are N r
i corresponding independent

variables taking values from w0 = {0, 1}.

Can choose γi variables taking the value 1 and the remaining
N r
i − γi variables taking the value 0.

Therefore, we have the constraints 0 ≤ γi ≤ N r
i . Note that γi

indeed represents the number of variables which take nonzero
values.
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Cryptanalysis of Full-round Chaghri

With the above model, the upper bounds for the degree Dr after r
steps are obtained in seconds:

Table: The upper bounds for Dr

r 0 2 4 6 8 10 12 14 16 18 20 22 24 25 26

Dr 1 3 7 12 17 22 27 32 37 42 47 52 58 60 63

Can mount a higher-order differential attack on full 8 rounds of
Chaghri with data and time complexity of 238.

There is a higher-order differential distinguisher for 12.5 rounds
with time and data complexity of 261. Can refine this to a
distinguisher for 13 rounds with time and data complexity of 263.
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Cryptanalysis of Full-round Chaghri

Can derive a key recovery attack on 13.5 round Chaghri with time
complexity about 2120 and data complexity 263.

Have considered univariate case with only one variable X . Can
extend methods and degree bounds to multivariate case with more
variables.

Refined degree bounds are possible. Practical experiments on up to
7 rounds show that these bounds are tight.
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Cryptanalysis of Full-round Chaghri
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Achieving Exponential Degree Increase

Design of (initial) Chaghri follows well established principles.

Which component(s) in Chaghri prevent(s) exponential degree
increase?

For FHE-friendly ciphers, reducing the multiplicative depth is of
great importance. Hence, we still keep the S-box of the form
S(x) = x2

k0+2k1 , which has algebraic degree 2.

Transform B(x) is affine over F2n . Almost cost-free for FHE
protocols.
Can we choose a different B(x) that provides an exponential
increase of the algebraic degree?
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Achieving (almost) exponential degree increase

In a search for secure affine transforms, consider a general form of
B(x):

B(x) =

|L|∑
i=1

c ′i x
2φi ,

where (c ′1, c
′
2, . . . , c

′
|L|) are constants in F263 such that B(x) is a

permutation and L = {φ1, φ2, . . . , φ|L|}. For the S-box, we keep

using S(x) = x2
32+1.

Application of coefficient grouping technique for this general B(x)
needs to adjust the general polynomial representation of
(zr ,1, zr ,2, zr ,3) (and more things; skipped).
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Achieving (almost) exponential degree increase

A dedicated search method for affine transforms is developed. This
does not find secure candidates for L when |L| = 2.

However this strategy finds that L = {0, 2, 8} is such a candidate.

With L = {0, 2, 8}, for the initial input chosen with a single
variable X , the algebraic degree can reach 63 after 7 steps.
Therefore, for this input form, the algebraic degree can reach 63
after 8 steps.In this way, an almost exponential increase of the
algebraic degree is achieved in the univariate setting.

This method can be extended to two and three input variables,
respectively.

According to our findings, designers have updated their cipher
Chaghri.
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New Parameters for Chaghri

Designers of Chaghri have chosen the total number of rounds T
with the formula

T = 1.5×max{5, η},

where η is the maximal number of rounds that can be attacked
with time complexity below 2128. With L = {0, 2, 8}, we have
η = 4 and hence the total number of rounds T can be kept
unchanged, i.e. T = 8.

We give an optional assignment to (c ′1, c
′
2, c

′
3, c

′
4) such that

B(x) = c ′1x + c ′2x
4 + c ′3x

256 + c ′4 is a permutation. In their
updated cipher, designers chose a different assignment.
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Conclusions

■ We perform an in-depth study on the increase of the algebraic
degree of Chaghri by proposing a novel efficient technique
called coefficient grouping.

■ This technique is different from known methods, and can well
capture how the exponents of the polynomials propagate
through the round function.

■ Break the full 8 rounds of Chaghri with a practical time and
data complexity and can even break up to 13.5 rounds.

■ Coefficient grouping is a generic method and potentially has
other applications.

■ Have not only attacked a modern cipher with it, but also
describe how to use it to search for secure cryptographic
components.
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Thank you
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