Trail Search with CRHS Equations

John Petter Indrøy and Håvard Raddum

https://eprint.iacr.org/2021/1329

Outline

• Finding good trails in block ciphers

• CRHS equations

• Using CRHS equations to find trails

• Results, Pathfinder and CryptaGraph

Classic block cipher design

Linear and differential attacks

- Some of the oldest types of attacks (early 90's)
- Disregard addition of keys and constants in analysis
- Attack efficiency depends on interplay between ${\cal S}$ and ${\cal L}$
- New designs must prove resistance against linear and differential attacks

Cipher model

DDT and LAT

• S-box characterized by differential distribution table (DDT) and linear approximation table (LAT)

 $DDT[\alpha][\beta] = |\{x \in \mathbb{F}_2^t | S(x) \oplus S(x \oplus \alpha) = \beta\}|$

 $LC[\alpha][\beta] = |\{x \in \mathbb{F}_2^t | \langle x, \alpha \rangle = \langle S(x), \beta \rangle \}|$ $LAT[\alpha][\beta] = |2LC[\alpha, \beta] - 2^t|$

**	DDT	**							>
	0	1	2	3	4	5	6	7	
0	8	0	0	0	0	0	0	0	Q
1	0	2	2	0	2	0	0	2	1
2	0	0	0	4	0	4	0	0	2
3	0	2	2	0	2	0	0	2	3
4	0	2	2	0	2	0	0	2	2
5	0	0	0	4	0	0	4	0	Ę
6	0	2	2	0	2	0	0	2	e
7	0	0	0	0	0	4	4	0	-

**	LAT	**							
	0	1	2	3	4	5	6	7	
									-
0	8	0	0	0	0	0	0	0	
1	0	0	4	4	4	4	0	0	
2	0	4	0	4	4	0	4	0	
3	0	4	4	0	0	4	4	0	
4	0	0	4	4	4	4	0	0	
5	0	0	0	0	0	0	0	8	
6	0	4	4	0	0	4	4	0	I
7	0	4	0	4	4	0	4	0	Ì

Starting a trail

One input gives many possible outputs through *S* Input to next *s* uniquely determined by output from previous *s*

Complete trails

Trail: $\mathbf{u} = (u_0, ..., u_r)$ such that u_1 is possible output of u_0 and u_{i+1} is possible output from $\mathcal{L}(u_i)$ for $1 \le i \le r-1$

Hull: set of trails where all trails have the same u_0 and u_r

Active and passive S-boxes

Weight of trails

Active S-boxes contribute to weight of trail, $w(\mathbf{u})$, passive do not Compexity of attacks $\approx 2^{w(\mathbf{u})}$

Core problem: Find valid trails with few active S-boxes

Methods for trail search

- Represent as MILP problem
- Use SAT or SMT solver
- Clever exhaustive search using tree structure with pruning
- Graph-based approach
 - [1] CryptaGraph, FSE 2018, https://eprint.iacr.org/2018/764

All of them have a problem when number of rounds increases

CRHS equations

working with exponentially large sets

CRHS equation

- Graph with nodes arranged in horisontal levels
- One node on top level, one node on bottom level
- At most two outgoing edges from nodes: 0-edge and 1-edge
- Edges go from node on one level to node on level below
- Linear combinations of variables associated with levels

CRHS equation

$$x_{2} + x_{5} + x_{6} = 0$$

$$x_{0} + x_{2} + x_{3} + x_{7} = 1$$

$$x_{1} + x_{3} + x_{6} + x_{7} = 1$$

$$x_{5} = 0$$

$$x_{6} = 0$$

Solution set to CRHS equation: union of solutions sets to Ax = bfor all b encoded as paths in graph

Operations on CRHS equation

 $0. x^2 + x^{5+} x^{6-}$ 1. x0 + x2 + x3 + x73 2. x1 + x3 + x6 + x75 6 3. x5 8 9 4. x6 10 11 Т

Swap two adjacent levels

Operations on CRHS equation

Add linear combination of one level onto linear combination on level below

Linear absorption

Linear dependencies among linear combinations can be removed

Joining CRHS equations

Two CRHS equations can easily be joined

Finding trails using CRHS equations

Label the state bits

CRHS equation for DDT/LAT

CRHS equation for DDT/LAT

Initial master CRHS equation

Initial Master CRHS equation has n + 1 nodes and contains all 2^n possible inputs to \mathcal{S} in first round

First join

Second join

Master CRHS after first round

CRHS contains starts of all possible trails $(u_0, u_1, ...)$

Second round

After last join+absorb

Paths in master CRHS equation encodes all possible trails in cipher

Counting active S-boxes

- Can count number of trails with i active S-boxes, $0 \le i \le rm$
- Linear complexity (in the number of nodes)
- Associate vector $(n_0, n_1, \dots, n_{rm}) \in \mathbb{Z}^{rm+1}$ with each node
- n_i indicates number of sub-trails below node with i active S-boxes

Counting active S-boxes

Counting active S-boxes

(n₀, n₁, n₂, ...)-vectors on this level indicate how many trails there are with exactly *i* active S-boxes

Pruning

- -Joining and absorbing makes number of nodes, $\mathcal{N},$ in Master CRHS equation grow
- Worst case: one absorb doubles number of nodes
- If hardware can handle CRHS equation with up to μ nodes, let $\sigma = \mu/2^t$ be the limit for pruning (*t*-bit S-box)
- Delete nodes when $\mathcal{N} > \sigma$
- Guarantee: after next join and absorb of b dependencies $\mathcal{N} < \mu$

Pruning strategy

- Delete nodes from level with most nodes (widest level)
- Compute number of active S-boxes in sub-trails below widest level
- Delete nodes with only high-weight sub-trails below itself

Pathfinder and CryptaGraph

Software tools

- Method using CRHS equations made into software tool called Pathfinder
- CryptaGraph tool implementing method in [1]
- Only requires reference implementation (in Rust) of cipher to use, no need to understand underlying methods

CryptaGraph method

Every node represents one n-bit state u_i

Nodes one same level are all n-bit states considered in given round Edges are all valid transitions from one round to next

Comparison of methods

CryptaGraph	Pathfinder
Cipher state represented by single node	Cipher state represented by partial path
States to include in search must be determined beforehand	States in search emerge dynamically at runtime
Computing weight of hull in aggregate fashion, works for exponentially large hulls	Computing weight of hull must be done one path at a time, does not work on exponentially large hulls

Strong advantages

Combining CryptaGraph and Pathfinder?

- Combining the tools should make strongest trail-search algorithm
- High-level idea:
 - 1.Run Pathfinder to find states that actually occur in low-weight trails
 - 2.Run CryptaGraph with nodes representing these states

Linear trail results

Cipher					
(Total Rounds,	Rounds	Soft Lim	Hull Size	\mathbf{ELP}	\mathbf{CG}
block size)			(Used, Found)		result
MIDORI64	6	2^{18}	$2^{21.62}, \ 2^{23.89}$	$2^{-85.03}$	$2^{-53.02}$
(16, 64)	7	2^{18}	$2^{26}, \ 2^{29.66}$	$2^{-108.42}$	$2^{-62.88}$
PRESENT	23	2^{18}	$2^{26}, \ 2^{37.03}$	$2^{-69.23}$	$2^{-61.00}$
(31, 64)	24	2^{18}	$2^{26}, \ 2^{38.60}$	$2^{-73.23}$	$2^{-63.61}$
	25	2^{18}	$2^{26}, \ 2^{39.65}$	$2^{-76.54}$	$2^{-66.21}$
PRIDE	15	2^{18}	1, 1	$2^{-58.00}$	$2^{-58.00}$
$(20, \ 64)$	16	2^{18}	7, 7	$2^{-65.99}$	$2^{-63.99}$
PRINCE	$2 \cdot 3$	2^{18}	19, 19	$2^{-55.57}$	$2^{-54.00}$
$(2\cdot 6,64)$	$2\cdot 4$	2^{18}	214,214	$2^{-92.90}$	$2^{-63.82}$
PUFFIN	32	2^{18}	$2^{26}, 2^{52.55}$	$2^{-83.69}$	$2^{-51.90}$
(32,64)					
QARMA	$2\cdot 3$	2^{18}	612, 1433	$2^{-95.75}$	$2^{-53.71}$
$(2\cdot 8,64)$					
RECTANGLE	12	2^{18}	$2^{16.66}, \ 2^{16.66}$	$2^{-56.75}$	$2^{-52.27}$
(25, 64)	13	2^{18}	$2^{17.16}, \ 2^{17.16}$	$2^{-64.22}$	$2^{-58.14}$
	14	2^{18}	$2^{16.51}, \ 2^{16.51}$	$2^{-68.48}$	$2^{-62.98}$

Differential trail results

Cipher					
(Total Rounds,	Rounds	Soft Lim	Hull Size	EDP	\mathbf{CG}
block size)			(Used, Found)		result
KLEIN	5	$2^{\hat{1}\hat{8}}$	8, 8	$2^{-44.39}$	$2^{-45.91}$
(12, 64)	6	2^{22}	4,4	$2^{-55.25}$	$2^{-69.00}$
LED	4	2^{22}	6, 18	$2^{-55.61}$	$2^{-49.42}$
$(32,\ 64)$					
$MANTIS_7$	$2\cdot 4$	2^{22}	$2^{24.94}, 2^{26.64}$	$2^{-100.87}$	$2^{-47.98}$
$(2\cdot 8,64)$					
MIDORI64	6	2^{22}	$2^{20.28}, 2^{21.50}$	$2^{-63.60}$	$2^{-52.37}$
(16, 64)	7	2^{22}	$2^{23.82},2^{25.49}$	$2^{-71.75}$	$2^{-61.22}$
PRESENT	15	2^{18}	$2^{15.42},\ 2^{15.42}$	$2^{-65.69}$	$2^{-58.00}$
(31, 64)	16	2^{18}	$2^{15.97}, 2^{16.29}$	$2^{-69.71}$	$2^{-61.80}$
	17	2^{18}	$2^{17,76}, 2^{17.76}$	$2^{-74.87}$	$2^{-63.52}$
PRIDE	15	2^{22}	1, 1	$2^{-58.00}$	$2^{-58.00}$
(20, 64)	16	2^{22}	1, 1	$2^{-64.00}$	$2^{-63.99}$
PRINCE	$2\cdot 3$	2^{22}	16, 20	$2^{-49.45}$	$2^{-55.91}$
$(2\cdot 6,64)$	$2\cdot 4$	2^{22}	36, 36	$2^{-80.67}$	$2^{-67.32}$
PUFFIN	32	2^{18}	$2^{26}, \ 2^{37.25}$	$2^{-79.71}$	$2^{-59.63}$
(32, 64)					

Trails for Klein and Prince

Klein S-box Layer

MSB 0000050000050000 2 S-box Layer 0000020000020000 Linear Layer 0600040200000000 3 S-box Layer 0100030500000000 Linear Layer 0909060001030201 7 080e040004040a0e Linear Layer 080c000000000604 4 S-box Layer 0b0d00000000809 Linear Layer 2 S-box Layer 0000000002060000 Linear Layer 04000e0e000000000 S-box Layer 3 0100030300000000

LSB Active S-boxes

Prince

LSB MSB 0000000000000101 S-box Layer 000000000000808 Linear Layer 000800008000000 S-box Layer 0008000004000000 Linear Layer 8040040840800000 S-box Layer 8080040450500000 Middle involution 8080040450500000 S-box Layer 8040040840800000 Linear Layer 0008000004000000 S-box Layer 00080000800000 Linear Layer 000000000000808 S-box Layer 000000000000101

Active S-boxes

2

2

6

6

2

12-round Prince trail

- Designers of Prince prove that a 4-round trail in Prince must contain at least 16 active S-boxes
- Conclude that trails in full 12-round Prince must have at least 48 active S-boxes
- Pathfinder finds trail with exactly 48 active S-boxes when run on 12-round Prince

Trail is non-iterative with number of active S-boxes in each round 2,6,6,2,2,6,6,2,2,6,6,2